Substation Design Instruction

Schneider Electric (Merlin Gerin) Compact CM/NS low voltage circuit breaker

IMPORTANT DISCLAIMER

As the information contained in this publication is subject to change from time to time, Endeavour Energy gives no warranty that the information is correct or complete or is a definitive statement of procedures. Endeavour Energy reserves the right to vary the content of this publication as and when required. You should make independent inquiries to satisfy yourself as to correctness and currency of the content. Endeavour Energy expressly disclaims all and any liability to any persons whatsoever in respect of anything done or not done by any such person in reliance, whether in whole or in part, on this document.

Copyright © Endeavour Energy 2016
Substation Design Instruction

SDI 254 SCHNEIDER ELECTRIC (MERLIN GERIN) COMPACT CM/NS LOW VOLTAGE CIRCUIT BREAKER

CONTENTS

1.0 PURPOSE...3
2.0 SCOPE ..3
3.0 REFERENCES..4
4.0 DEFINITIONS AND ABBREVIATIONS..4
5.0 ACTIONS...5
 5.1 General ..5
 5.1.1 Introduction ..5
 5.1.2 Product approval ...5
 5.1.3 Technical features ..5
 5.1.4 Technical specifications ...7
 5.1.5 De-rating of circuit breakers ...7
 5.1.6 Labelling ..8
 5.2 Installation..8
 5.2.1 General ...8
 5.2.2 Reference drawings ..9
 5.3 Operation...9
6.0 AUTHORITIES AND RESPONSIBILITIES..10
7.0 DOCUMENT CONTROL ...10
1.0 **PURPOSE**

To provide the technical and reference information to assist with the safe design, installation, commissioning, operation and decommissioning of compact CM/NS low voltage moulded case circuit breakers supplied and manufactured by Schneider Electric (previously known as Merlin Gerin).

2.0 **SCOPE**

This instruction provides information and reference documentation to assist in the safe design, installation, commissioning, operation and decommissioning of the Schneider Electric (Merlin Gerin) Compact CM/NS low voltage moulded case circuit breakers manufactured and supplied by Schneider Electric (previously known as Merlin Gerin).

This instruction does not give details on low voltage switchboard mounting and earthing, for which an appropriate document should be consulted.

Note: This circuit breaker is no longer approved for use in new installations on Endeavour Energy’s network. This instruction is for reference purposes only.

Units removed from the Network are to be disposed of according to Company Procedure GSU 0006 Disposal of surplus goods and equipment.

The scope of this document provides reference to the various lifecycle stages of the switchgear and therefore should be read in conjunction with:

- mounting and construction requirements: refer Mains Construction Instruction MCI 0006 – Underground distribution: Construction standards manual;
- earthing design, construction and testing: refer Earthing Design Instruction EDI 100 – Distribution earthing design, construction and test;
- general details and minimum design requirements: refer Substation Design Instruction SDI 101 – Distribution substation general details and minimum requirement and Mains Design MDI 0028 – Underground distribution network design;
- testing and commissioning: refer Substation Design Instruction SDI 120 – Testing and commissioning for distribution systems and Division Procedure Network GNV 1044 – Commissioning network electrical assets;
- ongoing maintenance requirements: refer Substation Maintenance Instruction SMI 101 – Minimum requirement for maintenance of distribution equipment; and
- standard drawing requirements: Standard Asset Data SAD 0001 – Project drawing standards.

This document shall be read in conjunction with the manufacturer’s installation instructions available on the Endeavour Energy standards website (document numbers SDI254S01, SDI254S02, SDI254S03 and SDI254S04).
3.0 REFERENCES

Company Policy (Network) 9.1.7 – Commissioning Network Electrical Assets
Company Policy (Network) 9.2.2 – Network Protection
Company Policy (Network) 9.2.5 – Network Asset Design
Company Policy (Network) 9.2.10 – Network Asset Ratings
Company Policy (Network) 9.7.1 – Network Asset Construction
Company Policy (Network) 9.8.3 – Network Operations
Company Policy (Network) 9.9.1 – Network Asset Maintenance
Company Procedure GSU 0006 – Disposal of surplus goods and equipment
Division Procedure GNV 1044 – Commissioning Network Electrical Assets
Earthing Design Instruction EDI 100 – Distribution earthing design, construction and test
Equipment Technical Specification ETS 0069 – Distribution indoor and padmount substation low voltage switchgear
Equipment Technical Specification ETS 0077 – Padmount substation cubicle specification
Protection Design Instructions (PDI)
Mains Construction Instruction MCI 0006 – Underground distribution construction standards manual
Mains Design Instruction MDI 0028 – Underground distribution network design
Standard Asset Data SAD 0001 – Project drawing standards
Substation Design Instruction SDI 101 – Distribution substation general details and minimum requirements
Substation Design Instruction SDI 120 – Testing and commissioning for distribution systems
Substation Maintenance Instruction SMI 101 – Minimum requirement for maintenance of distribution equipment
Instructions manual (Endeavour Energy standards document no. Substation Design Instruction SDI 254S01- Compact CM1250-2500)
Installation manual (Endeavour Energy standards document no. Substation Design Instruction SDI254S02 - Compact NS1600b-3200)
MCCB Schneider Electric catalogue (Endeavour Energy standards document no. SDI254S03)
Micrologic control units 2.0 and 5.0 User manual (Endeavour Energy standards document no. SDI254S04)
Network Management Plan (2013 Review)
NSW Work Health and Safety Act 2011
NSW Work Health and Safety Regulation 2011
AS ISO 1000 – The international system of units (SI) and its application
AS 1824.1 – Insulation co-ordination - Definitions, principles and rules
AS 2629 – Separable insulated connectors for power distribution systems above 1kV
AS 2700 – Colour standards for general purposes
AS 60044.1-2007 – Instrument transformers – Current transformers
AS 60947.2 – Low voltage switchgear and controlgear Part 2: Circuit breakers
AS/NZS 3000 – Electrical Installations (known as the Aust. and NZ Wiring Rules)
ENA National Electricity Network Safety Code (Doc. 01-2008)

4.0 DEFINITIONS AND ABBREVIATIONS

CB
Circuit breaker

CT
Current transformer

LED
Light emitting diode
LV
Low voltage

LVCB
Low voltage circuit breaker

5.0 ACTIONS

5.1 General

5.1.1 Introduction

The Schneider Electric (previously known as Merlin Gerin) Compact CM/NS low voltage circuit breaker is a moulded case circuit breaker. It is used to protect the low voltage distribution network. It is designed to be mounted on LV switchboards and used in indoor or padmount substations. Endeavour Energy has previously purchased the Compact CM1250, Compact CM1600 and Compact CM2500 circuit breakers. These breakers were superseded by the new NS range from Schneider Electric.

A large number of these circuit breakers are installed on Endeavour Energy's system and will continue to be in use for a long time. These instructions aim to provide technical information and long-term support.

5.1.2 Product approval

Compact LVCB's from Schneider Electric are no longer approved for use in new installations on Endeavour Energy's network. The product approval numbers in the table below are provided for reference purposes only.

Table 1: Compact low voltage circuit breakers from Schneider Electric

<table>
<thead>
<tr>
<th>Schneider part number</th>
<th>Description</th>
<th>Designated network</th>
<th>Approval no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQE-25264-D</td>
<td>Circuit Breakers fuse strips and boards Type 2 - 1400 A with NS 3200N CB2,3</td>
<td>415V</td>
<td>390030</td>
</tr>
<tr>
<td>EQE-25264-D</td>
<td>Circuit Breakers fuse strips and boards Type 3 - 2100 A with NS 3200N CB,3</td>
<td>415V</td>
<td>390031</td>
</tr>
</tbody>
</table>

5.1.3 Technical features

5.1.3.1 Protection

Compact CM circuit breakers are provided with ST CM 2 trip unit. Available settings are:

Long time delay protection
- Pick up setting I_r 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 times I_n
- Tripping between 1.05 and 1.25 x I_r

Short time and instantaneous protection
- Pick up setting $I_m = 2,4, 6$ and 8 times I_r
- Accuracy $\pm 10\%$
Time setting | O | A | B | C
---|---|---|---|---
Maximum re-settable delay (ms) | 0 | 35 | 125 | 225
Maximum breaking time (ms) | 50 | 120 | 220 | 330

All the compact CM circuit breakers incorporate an instantaneous protection set at 35kA rms, in addition to the above described protection.

Selection of pick-up current settings
The trip current pick-up setting is adjustable in multiples of the current transformer rating (In) as follows:

| Compact CM | 1250 | 1600 | 2500 |
| Phase CT In | 1250 | 1600 | 2500 |

The adjustment of pick up settings is common to all the poles simultaneously.

Compact NS circuit breakers are provided with Micrologic 5.0 control unit. Available settings are:

Long time delay protection
- Pick up setting \(Ir \) 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 1 times \(In \)
- Tripping between 1.05 and 1.20 \(\times Ir \)

Short time protection
- Pick up setting \(Isd = 1.5, 2, 2.5, 3, 4, 6, 8 \) and 10 times \(Ir \)
- Accuracy \pm 10\%
- Time setting 0 0.1 0.2 0.3 0.4
- Maximum re-settable delay (ms) 20 80 140 230 350
- Maximum breaking time (ms) 80 140 200 320 500

Instantaneous protection
- Pick up setting \(Ii = 2, 3, 4, 6, 8, 10, 12 \) and 15 times \(In \)
- Accuracy \pm 10\%
- Maximum re-settable delay (ms) 20
- Maximum breaking time (ms) 50

The setting for all CBs shall be entered from the specific CB protection settings listed in Section 7 of MCI 0006 Underground Distribution: Construction standard manual.

5.1.3.2 Dimensions
The different ratings of Compact CM / NS circuit breakers are dimensionally the same.

Table 2: Dimensions of compact CM and NS circuit breakers

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Compact CM</th>
<th>Compact NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (overall)</td>
<td>418mm</td>
<td>420mm</td>
</tr>
<tr>
<td>Height (overall)</td>
<td>430mm</td>
<td>330mm</td>
</tr>
<tr>
<td>Depth (with handle)</td>
<td>451mm</td>
<td>368mm</td>
</tr>
<tr>
<td>Depth (without handle)</td>
<td>337mm</td>
<td>160mm</td>
</tr>
</tbody>
</table>
5.1.3.3 Cable terminations

The Compact CM/NS circuit breaker is suitable for termination of a maximum of 4 x 630 sq. mm cables on each phase. The cables must be supported on the Unistrut rail provided on a frame and in a culvert.

These cables are to be fitted with standard lugs. Cable lugs must conform to Drawing no. 078239. Lugs are to be secured using MI2 high tensile bolts, tensioned to 45Nm.

5.1.3.4 Safety barriers

Safety barrier/shrouds must be installed on incoming and outgoing cable connections to protect operators from accidental touch. Safety barriers/shrouds can be fabricated from sheet metal or insulating polycarbonate sheets.

Further description, operation and maintenance instructions on the LVCB are set out in manuals, guides and instructions provided by the manufacturer.

5.1.4 Technical specifications

The specifications of the low voltage circuit breaker are as follows:

Table 3: Specifications for compact CM and NS circuit breakers

<table>
<thead>
<tr>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker type</td>
<td>CM 1250</td>
</tr>
<tr>
<td>Applicable standards</td>
<td>IEC</td>
</tr>
<tr>
<td>Number of phases</td>
<td>3</td>
</tr>
<tr>
<td>Rated voltage:</td>
<td>660 V</td>
</tr>
<tr>
<td>Rated current</td>
<td>1250A</td>
</tr>
<tr>
<td>Rated breaking capacity</td>
<td>50 kA</td>
</tr>
<tr>
<td>Rated peak making capacity</td>
<td>110 kA</td>
</tr>
<tr>
<td>Maximum break time</td>
<td>50 ms</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 40</td>
</tr>
<tr>
<td>Insulation level 1min PF withstand</td>
<td>3000 V</td>
</tr>
</tbody>
</table>

For further information, refer to the documentation provided by the manufacturer.

5.1.5 De-rating of circuit breakers

The nominal rated current of a circuit breaker is defined under standard test conditions. These conditions may be very different to those prevailing in the field. The circuit breaker is normally de-rated to lower current ratings to compensate for adverse field conditions.

The table below gives the maximum allowable continuous current ratings for Compact CM/NS circuit breakers under various service conditions.
Table 4: De-rating of compact CM and NS circuit breakers

<table>
<thead>
<tr>
<th>Circuit breaker type</th>
<th>CM 1250</th>
<th>CM 1600</th>
<th>CM 2500</th>
<th>NS2500N</th>
<th>NS3200N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker installation:</td>
<td>De-rating label to be affixed to CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Indoor substation</td>
<td>1100 A</td>
<td>1300 A</td>
<td>1600 A</td>
<td>1600 A</td>
<td>2100 A</td>
</tr>
<tr>
<td>• Padmount substation without louvres</td>
<td>900 A</td>
<td>1100 A</td>
<td>1300 A</td>
<td>1300 A</td>
<td>-</td>
</tr>
<tr>
<td>• Padmount substation with louvres</td>
<td>950 A</td>
<td>1160 A</td>
<td>1370 A</td>
<td>1370 A</td>
<td>-</td>
</tr>
<tr>
<td>• Separate cubicle</td>
<td>1000 A</td>
<td>1200 A</td>
<td>1450 A</td>
<td>1450 A</td>
<td>-</td>
</tr>
</tbody>
</table>

It is important to de-rate the breakers to the maximum allowable current ratings as indicated in table 4 above. Failure to observe these limitations could result in serious damage or fire and destruction of equipment/substation.

5.1.6 Labelling

A label, in accordance with table 4 above, shall be affixed to the front of the CB to indicate to field staff what the de-rated value of the equipment is for the installed location. If the CB frame is relocated then the label will need to be re-assessed, and possibly replaced, in line with table 4.

5.2 Installation

5.2.1 General

The Schneider Electric (Merlin Gerin) compact CM/NS LV CB is usually mounted in type 1, type 2 and type 3 LV switchboards. These switchboards can be mounted in a padmount substation or in an indoor substation. Earthing of the LV CB shall comply with Earthing Design Instruction EDI 100 – Distribution earthing design, construction and test, and commissioning shall be performed in accordance with Substation Design Instruction SDI 120 – Testing and commissioning for distribution systems. Installation should be performed safely with all relevant authorisations, training, safe work method statements and all relevant Safe Work and WorkCover codes of practice.
Fig. 1 Typical installation of Compact CM/NS LVCB

Typical installation is shown in figure 1 below:

5.2.2 Reference drawings

<table>
<thead>
<tr>
<th>Drawing no.</th>
<th>Am.</th>
<th>Drawing title</th>
</tr>
</thead>
<tbody>
<tr>
<td>052754</td>
<td>P</td>
<td>Single LVCB General Arrangement</td>
</tr>
<tr>
<td>052756</td>
<td>G</td>
<td>Single LVCB Mounting and Connection of Fuse Disconnectors</td>
</tr>
<tr>
<td>078239</td>
<td>B</td>
<td>Low Voltage equipment Cable Lug Critical Dimensions.</td>
</tr>
</tbody>
</table>

Site frontages shall be of sufficient size to allow the ultimate intended capacity to be delivered.

5.3 Operation

The Compact CM circuit breaker is provided with an integrated protection trip unit, ST-CM2, and the Compact NS circuit breaker is provided with a Micrologic 5.0 control unit.

Note: Operational setting on the protection trip units shall be obtained from Endeavour Energy’s Protection Design Group prior to commissioning.

The circuit breakers are positive action, that is, the breaker can be either in open or closed position. The circuit breaker is a three-phase positive operating device (all the three phases are operated simultaneously). This is clearly indicated on the circuit breaker front panel.

It provides a positive break indication, that is, the operating handle can indicate only the OFF or ON position if all the contacts are positively open and separated by the necessary isolating distances. Each circuit breaker has an integrated solid state protection trip unit.
The circuit breaker can be operated by pushing the operating handle up or down. Further details on application, setting procedures, operation and maintenance are provided in the manufacturer's instructions. These are attached to this instruction.

6.0 AUTHORITIES AND RESPONSIBILITIES

Chief Engineer has the authority and responsibility for:

- approving this instruction; and
- approving variations to the requirements of this instruction.

Manager Primary Systems has the authority and responsibility for:

- endorsing and recommending changes to this instruction; and
- revisions to this instruction.

Network Substations Manager has the authority and responsibility for revising and updating this instruction in accordance with company policy and procedures.

Regional managers have the authority and responsibility for determining whether all designs carried out by regional employees conform to the requirements of this instruction.

Manager Network Connections has the authority and responsibility for determining whether all designs carried out by Level 3 ASPs conform to the requirements of this instruction.

Accredited Service Providers have the responsibility to determine that the latest issue of any instruction or drawing relevant to or listed in this manual is available and used during the design of any project.

7.0 DOCUMENT CONTROL

Documentation Content Coordinator : Network Substations Manager

Documentation Distribution Coordinator : Branch Process Coordinator